Probabilistic Marching Cubes

نویسندگان

  • Kai Pöthkow
  • Britta Weber
  • Hans-Christian Hege
چکیده

In this paper we revisit the computation and visualization of equivalents to isocontours in uncertain scalar fields. We model uncertainty by discrete random fields and, in contrast to previous methods, also take arbitrary spatial correlations into account. Starting with joint distributions of the random variables associated to the sample locations, we compute level crossing probabilities for cells of the sample grid. This corresponds to computing the probabilities that the well-known symmetry-reduced marching cubes cases occur in random field realizations. For Gaussian random fields, only marginal density functions that correspond to the vertices of the considered cell need to be integrated. We compute the integrals for each cell in the sample grid using a Monte Carlo method. The probabilistic ansatz does not suffer from degenerate cases that usually require case distinctions and solutions of ill-conditioned problems. Applications in 2D and 3D, both to synthetic and real data from ensemble simulations in climate research, illustrate the influence of spatial correlations on the spatial distribution of uncertain isocontours.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quality Isosurface Mesh Generation Using an Extended Marching Cubes Lookup Table

The Marching Cubes Algorithm may return degenerate, zero area isosurface triangles, and often returns isosurface triangles with small areas, edges or angles. We show how to avoid both problems using an extended Marching Cubes lookup table. As opposed to the conventional Marching Cubes lookup table, the extended lookup table differentiates scalar values equal to the isovalue from scalar values g...

متن کامل

Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data

In this paper, we present a new method for surface extraction from volume data which preserves sharp features, maintains consistent topology and generates surface adaptively without crack patching. Our approach is based on the marching cubes algorithm, a popular method to convert volumetric data to polygonal meshes. The original marching cubes algorithm suffers from problems of topological inco...

متن کامل

Adaptive cube tessellation for topologically correct isosurfaces

Three dimensional datasets representing scalar fields are frequently rendered using isosurfaces. For datasets arranged as a cubic lattice, the marching cubes algorithm is the most used isosurface extraction method. However, the marching cubes algorithm produces some ambiguities which have been solved using different approaches that normally imply a more complex process. One of them is to tessel...

متن کامل

Practical considerations on Marching Cubes 33 topological correctness

Chernyaev’s Marching Cubes 33 is one of the first algorithms intended to preserve the topology of the trilinear interpolant. In this work, we address three issues with the Marching Cubes 33 algorithm, two of which are related to its original description and one that is related to its variant. In particular, we solve a problem with the core disambiguation procedure of Marching Cubes 33 that prev...

متن کامل

Marching Cubes in an Unsigned Distance Field for Surface Reconstruction from Unorganized Point Sets

Surface reconstruction from unorganized point set is a common problem in computer graphics. Generation of the signed distance field from the point set is a common methodology for the surface reconstruction. The reconstruction of implicit surfaces is made with the algorithm of marching cubes, but the distance field of a point set can not be processed with marching cubes because the unsigned natu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011